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Two statistical distances for random variables, based on the standard deviation operator, and on the mean absolute 
deviation, are proposed. The numerical values obtained with these relations are the same if both random variables are 
Gaussian, and may differ in the other cases. A generalized mean deviation covariance and correlation coefficients are also 
defined. These new statistical operators can be used to detect the non-Gaussian random or a mixture of random variables. 
The generalized statistical operators are differently affected by outliers and from these on optimum operator can be choose.  
These new statistical operators have been used for gaze guidance evaluations and for scan path measurements. 
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1. Introduction 
    
The correlation coefficient generally used in statistics 

is the Pearson’s product moment(1), where E is the 
expectation operator and σ is the standard deviation. The 
Eq. (1) can be rewritten as (2) where by Xn and Yn are 
noted the normalized values of the random variable X and 
Y (3).  
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The pseudo-metric function can be defined using the 

correlation between X and Y with Eq.(4). The statistical 
distance between the random variables is zero when these 
are fully correlated; when these are independent or 
uncorrelated the value of the distance reaches the 
maximum value of one.   

 
( , ) 1 ( , )d X Y corr X Y= −               (4) 

 
A function of the random variables X and Y must 

satisfy the following conditions to be considered a pseudo-
metric function:  

 
( , ) 0d X Y ≥                                (5) 

  
( , ) 0,d X Y if X Y= =                     (6)   

 
( , ) ( , )d X Y d Y X=                          (7) 

( , ) ( , ) ( , )d X Z d X Y d Y Z≤ +                    (8) 
 
The function described by Eq. (4) satisfies the first 

three conditions but not the last condition called 
“subadditivity” or the triangle inequality. More precisely, 
Eq. (4) always does not satisfy the triangle inequality, and 
seems necessary to find a different correlation coefficient. 
Bradley has found a different correlation coefficient (6) [1] 
using the mean (average) absolute deviation (MAD) (5) 
(which is the average absolute deviation from the mean of 
a random variable X ). The random variables u and v in Eq. 
(6) must satisfy the conditions (7). The values given by the 
Bradley correlation coefficient differ from those computed 
with the Pearson’s relation (1) but this is less sensitive to 
outliers than the Pearson’s correlation coefficient [2-4]. 
Unfortunately with the Bradley’ correlation coefficient can 
not be defined a statistical distance using (4).  
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2. Generalized mean deviation 
 
The relation of  Pearson’s correlation coefficient  can 

be  rewritten using  the standard deviation operator as (8). 
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A different relation, but with similar proprieties, is 

obtained if instead of the standard deviation operator the 
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MAD is used. Other different expressions of the 
correlation coefficient can be obtained if the standard 
deviation is replaced with other operators.   

The common property of the standard deviation and 
of the MAD is (9) or (10). We define the general 
expression of the generalized mean deviation (GMD) 
based on the function fσ with the equation (11) if the 
condition (12) is fulfilled. 

 
 ( ) ( )a X b a Xσ σ⋅ + = ⋅   (9) 

 
[ ] [ ]E a X b E a X b a E X⎡ ⎤⋅ + − ⋅ + = ⋅⎣ ⎦   (10) 
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As an example we compute the GMD of the power 

function (13). In the case when X is normal distributed 
random variable it can be represented as Eq. (14) where x 
is a normal random variable with zero mean and with a 
standard deviation equal to one. The GMD is given by Eq. 
or (16) where pc  is a constant  that does not depend on the 
MAD or the standard deviation of the variable X it 
depends only on the distribution function of the random 
variable. 
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If the distributed random variable X has an uniform 

distribution in the interval [-a, a] then the GMD is given 
by Eq. (17) . 
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The logarithm function satisfy the condition (12) and 

a GMD can be defined using this function (19). The value 
of the constant logσ , when X has a normal distribution is 
given by (20) .  
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For a normal distribution the GMD of the central 

absolute moments is Eq. (21), and the values of Cp are 
given by (22) and (23). The values of Cp for a uniform 
distributed random variable are given by (24), and this 
value decrease when p increase while, in the case of a 
normal distribution, these values increases. 
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From Eq. (11) and (12) results that always we have  

(25),  (26), because ( )Xσ is a constant. In the particular 
case when fσ  is the power function (13) then Cp(p) is a 
function on p and it is a functional transform of the 
random variable’s distribution. Cp(p) is the GMD of the 
normalized variable, and this function can be computed or 
determined. The Cp(p) function is used to find a suitable 
value of p that will be used to detect changes of the 
distribution function, non-Gaussianity or to compute a 
corrected standard deviation. For example Cp(1/4) can be 
used to detect non-Gaussianity instead of kurtosis. 
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For example we need to find a proper value of p to 

detect that the pseudo random variable xp = 
random('poiss', 9, 10^6, 1) generated with 
MatLab is non-Gaussian, or if its distribution have been 
changed by adding 1% of a normal or uniform distributed 
random variable with the same standard deviation. 
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Fig. 1. The ratio of Cp(p,xp+xu/100)/Cp(p,xp+xn/100) is 
represented with green, Cp(p,xp)/Cp(p,xp+xn/100) with 
blue, Cp(p,xp)/Cp(p,xp+xu/100) with black, 
Cp(p,xp)/Cp(p,xn) with red, and Cp(p,xp)/ Cp(p,xu) with 
magenta. On the abscise are represented the values of  p. 

 
The values of  Cp(p) of the random variable xp, xn, 

xu, xp+xu/100, and xp+xn/100 are noted with Cp(p,xp), 
Cp(p,xn), Cp(p,xu),  Cp(p,xp+xu/100), Cp(p,xp+xn/100), 
where xn = random('norm', 0, 3, 10^6, 
1);xu = random('unif', -5.2, 5.2, 10^6, 
1). Annualizing the graphs in Fig.1 appears rather 
difficult to establish that the random variable xp is 
Gaussian or not using the forth-centered moment. This 
problem can be solved using the ratio 
Cp(1/4,xp)/Cp(1/4,xn) of the GMDs, because this value 
differ with about 20% when the random variable has a 
Poisson distribution.   

 
 
3. Generalized correlation coefficient  
 
The generalized correlation coefficient is a 

generalization of Eq. (8) by using the GMD instead of the 
standard deviation. In the classical relation the two main 
expressions are raised to the power of two, but in the 
generalized expression these can be raised at any real 
power.   Using the pseudo-normalized variables (28) the 
Eq. can be rewritten as Eq. (27). In a similar way can be 
defined a generalized expression of the covariance (29). 
The covariance equals with the generalized covariance for 
p=2 and q=2 , and for q=2  and different p values the 
generalized covariance equals the covariance multiplied by 
a constant (30).   
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The classical expressions of the covariance and 

correlation are obtained for p=q=2. Other important 
particular case are for  p=q=1, [p=1,  q=2] and [p=2, 
q=1]. 

Generalized covariance and correlation can also be 
defined using a GMD based on the logarithm function or 
other functions. In the case when both random variables 
have a normal distribution, the generalized relations give 
similar results as the classical expressions, and little or any 
additional information can be obtained. The generalized 
relations can be useful when non-Gaussian random 
variable are used, or in the case of mixtures of Gaussians 
distributions. 

The presence of outliers may be detected and affected 
correlation coefficients can be corrected choosing an 
adequate generalized correlation coefficient.  

In the particular case of p=1 and p=2 the GMD are 
1( )Xσ (31) and 2 ( )Xσ (32).  
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The correlation coefficients 1,1( , )corr X Y and 

2,1( , )corr X Y are given by Eq. (33) and respectively by Eq. 
(34), and these two relations gives the same result because 
the constant 1c is simplified (35).  
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4. Pseudo-metrics functions 
 
We define the statistical distance between two random 

variables X and Y with the Eq. (36) that can be rewritten as 
(37) where Xn and Yn are the normalized random variables. 
This statistical distance is a pseudo metric function that 
satisfies the conditions  
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The first condition is fulfilled because in Eq. (37) the 

sum of two positive numbers is greater than their 
difference. The condition  in the case when ( , )d X Y is a 
metric, is realized if and only if X=Y, but for  random 
variables such a restriction is too strong. In this case, the 
condition  is fulfilled, but  ( , ) 0d X Y = also when the 
variables X and Y are fully correlated. 

The condition is also fulfilled because 
( ) ( )n n n nX Y Y Xσ σ+ = + and ( ) ( )n n n nX Y Y Xσ σ− = − in 

Eq.(37). Condition can be proved observing that 
( , )d X Z is maxim when X and Y are uncorrelated. 
( , ) ( , )d X Y d Y Z+ is minim when Y is correlated with X 

and Z, and in these conditions the Eqs. are fulfilled. The 
resulting inequality is rather simple and can be graphically 
resolved. 

 
n n nY a X b Z= ⋅ + ⋅                                (44) 

 
2 2, 1n n n nX Y a Y Z b a b⋅ = ⋅ = + =              (45) 

 
2 2 2 1n n nX Y Z= = =                         (46) 

 
A similar pseudo metric function can be defined using 

the MGD operator instead of the standard deviation (38). 
In the case when X and Y are normal distributed random 
variables the value of this distance is identical with (37). 
This can be proved using (35). 
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The values of the statistical distance for fully 

correlated or identical random variables is zero, for 
partially correlated variables its value is between zero and 
one, and for completely  uncorrelated or independent 
variables the value is one. 

 
 
5. Example 
    
We consider three (pseudo) random variables x, y and 

z generated with MatLab: 
x = random ('norm', 0, 1, nr_s, 1); 
z = random('unif',-1, 1, nr_s,1) - x/3; 

y = a*x + (1 - a)*z; 
x has a normal distribution with zero mean and  a 

standard deviation equal with 1, z is composed from a 
random variable with a uniform distribution in the interval 
(-1,1) from which is subtracted one third of x. 

y is a linear combination of x and z, and this 
combination depends on the value of the parameter a. The 
samples number for each variable is nr_s=106. 

The value of ( , )ad x z  is a constant, and it is 
represented in Fig. 2 with a red horizontal dotted line. On 
the abscise axis are represented the values of the parameter 
a. On ordinate are represented the values of ( , )d x y and 

( , )d y z  with a solid blue line and respectively with a dash 
line, the values of   the ( , )ad x y and ( , )ad y z  with a solid 
and dash blue line, the values of the correlation 
coefficients values ( , )corr x y and ( , )corr y z with a green 
and a dash green line.  

 

 
 

Fig. 2. The values of the statistical distance function of 
the parameter a. 

 
When the value of the parameter a varies from zero to 

one the values of ( , )d x y and ( , )ad x y to a maximum value 
of one and then decreases to zero. When the value of 
a=0.25 the variables x and y become independent and the 
statistical “distance” reaches the greatest value of one. In 
this point the correlation coefficient ( , )corr x y =0. When 
a=1 the variables x and y become equals and the statistical 
“distance” is zero. 

The graph of the sun of the two functions ( , )ad x y and 
( , )ad y z is the red curve in the upper part of the Fig. 2. 

The functions ( , )ad y z and ( , )d y z varies similarly, 
when a =0 their values are zero because the variables y 
and z are identical. The functions reach their maximum 
value in different points. This difference is caused by the 
fact that in this point the correlation coefficient 

( , )corr y z is zero, but the variables y and z are not 
independent, and such situations can be detected in this 
way. 

If 1X and 2X are two independent random variables 
and X and Y are two linear combinations of these (39) 
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then the correlation coefficient is zero for  the values of a1, 
a2,b1, and b2 that are the solutions of the equation (40). Not 
all the random variables  X and Y that satisfy (40) are 
independent. Some of these situations can be detected 
using the two generalized correlation coefficients 

1,1( , )corr X Y and 2,2 ( , )corr X Y  that has different values.  
 

1 1 2 2 1 1 2 2,X a X a X Y b X b X= ⋅ + ⋅ = ⋅ + ⋅   (39) 
2 2

1 1 1 2 2 2( , ) ( ) ( ) 0corr X Y a b X a b Xσ σ= ⋅ ⋅ + ⋅ ⋅ =  
 (40) 

The random variables X and Y that are solutions of the 
Eq. (40) for the same values of a1, a2, b1, and b2 may be 
independent or not if X1 and X2 has different distributions, 
and their standard deviations are the same. For example, if 
the independent random variable pair X1 , X2 follows the 
bivariate normal distribution then 1 2X X a X= + ⋅  and 

1 2Y X a X= − ⋅ are independent random variables if 
( )
( )

1

2

X
a

X
σ
σ

= , but this might not be true if X1 and  X2 has a 

different distribution. When both variables x and y are 
Gaussian then the two statistical distances ( , )ad y z , 

( , )d y z  gives the same values. 
The statistical distance has been used for gaze 

guidance evaluation and for scan path measurements. The 
scan path is determinate mainly by the scene and the scene 
dynamics but it has also physiological components. Some 
of these physiological aspects has already been observed 
and studied, as for example, the gaze of tired subjects that 
is less dynamic. The scan path has also an important 
random component and some aspects are quite difficult to 
be observed and measured [5]. Processing many 
recordings have been observed that the statistical distance 
between the duration of a fixation and the amplitude of the 
next saccade is different for some subjects, and the 
fixation and the amplitude of the last saccade are less 
correlated.   

 
 
6. Conclusions  
 
The generalized covariance can be considered as an 

alternative to the classical covariance.  It some cases it can 
be computed faster than the classical relation. Another 
advantage is that outliers less affect some particular 
relations of the generalized covariance than the classical 
covariance. 

The generalized correlation coefficient has similar 
advantages as the generalized covariance.  What is 
important to mention is that in this case is not necessary to 
know a conversion constant like in the case of the GMD 
and the generalized covariance. The values computed with 
some particular generalized correlation coefficient differ 
only by 1% from those computed with the Pearson’s 
correlation coefficient.  

The presence of outliers can be detected by computing 
the difference between different generalized correlation 
coefficients  

The GMD the generalized covariance and correlation 
coefficient to be less sensitive to outliers have been tested 
on some experimental data with good results. 
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